

Power scaling of ultrafast laser amplifiers via coherent beam combination

Marco Kienel

Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany

Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany

Helmholtz Institute Jena

www.iap.uni-jena.de

marco.kienel@uni-jena.de

Outline

1) Motivation

- 2) Power-scaling of ultrashortpulse fiber laser systems
- 3) Power-scaling using multiplexing schemes
- 4) Summary & Outlook

Helmholtz Institute Jena

Motivation Applications of femtosecond laser systems

Manufacturing

High-harmonic generation, XUV imaging, EUV lithography, FEL, Atto science

Novel laser particle accelerators, proton therapy

Applications require laser systems with high pulse peak power

In conjunction with high repetition rates/high average powers

[1] C.B. Schroeder, E. Esarey, C.G.R. Geddes, C. Benedetti und W. P. Leemans, Phys. Rev. ST Accel. Beams 13 (2010)
 [2] W. Leemans, W. Chou und M. Uesaka, ICFA Beam dynamics newsletter 56 (2011)

Target parameters^[2] 32 J, <300 fs $M^2 = 1$ 15 kHz \rightarrow 480 kW η_{el-opt} > 20% There is no laser system available that can achieve these parameters!

> HELMHOLTZ ASSOCIATION

[1] C.B. Schroeder, E. Esarey, C.G.R. Geddes, C. Benedetti und W. P. Leemans, Phys. Rev. ST Accel. Beams 13 (2010)
 [2] W. Leemans, W. Chou und M. Uesaka, ICFA Beam dynamics newsletter 56 (2011)

BELLA: Titanium–sapphire laser, commercially available from Thales

- Pulse energie: 42J, Pulse duration: 40fs → Pulse peak power: >1PW
- Repetition rate: 1Hz
- Efficiency: 42W opt. from 130kW electr.: 0.03%

Poor thermo-optic properties

HELMHOLTZ ASSOCIATION

Helmholtz Institute Jena

The performance of a single amplifiers is limited by physical effects, such as:

- Thermal effects
- Nonlinear effects

E. Snitzer, "Proposed Fiber Cavities for Optical Masers," J. Appl. Phys. **32**, 36–39 (1961).
 A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B **58**, 365–372 (1994).
 K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, Opt. Lett. **23**, 370-372 (1998)

Power-scaling of ultrashort-pulse fiber laser systems Limitations of fiber-based systems

Nonlinear effects lead to pulse distortions

limit achievable peak power

Mode instabilities lead to beam quality degradation

limit achievable average power^[1]

Outline

1) Motivation

- 2) Power-scaling of ultrashortpulse fiber laser systems
- 3) Power-scaling using multiplexing schemes
- 4) Summary & Outlook

Power-scaling of ultrashort-pulse fiber laser systems Scaling possibilities

Institute of Applied Physics Friedrich-Schiller-Universität Jena

[1] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, 3. Ed. (2001)

[2] D. Strickland and G. Mourou, Opt. Comm. 56 (1985)

[3] F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36 (2011)

Helmholtz Institute Jena

DLTZ

ASSOCIATION

Power-scaling of ultrashort-pulse fiber laser systems Typical setup of femtosecond high-power/energy fiber laser system

- Phase shaping using spatial light modulator (SLM)
- Pulse selection using acousto-optic modulators (AOM)

Maximum average power: $830 \text{ W}^{[1]}$ Maximum pulse energy: $2.2 \text{ mJ}^{[2]}$ $(P_{\text{peak}} = 3.8 \text{ GW})$

[1] T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, *Opt. Lett.* 35, 94 (2010)
 [2] T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, *Opt. Express* 19, 255 (2011)

- Further scaling of the modefield diameter limited by production tolerances of the respective fiber design
- Stretched pulse duration limited by grating size

Additional performancescaling concepts required

[1] D. Schimpf, J. Limpert, and A. Tünnermann, J. Opt. Soc. Am. B 27, 2051-2060 (2010)

Outline

1) Motivation

- 2) Power-scaling of ultrashortpulse fiber laser systems
- 3) Power-scaling using multiplexing schemes
- 4) Summary & Outlook

Power-scaling using multiplexing schemes Spatial and temporal multiplexing

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Spatial multiplexing Coherent beam combining^[1]

N-times scaling
 (of the peak and average power)

Artificial scaling of mode area

[1] Fan, T.Y., IEEE JSTQE 11, 567 (2005)

[2] S. Szatmari and P. Simon, Opt. Communication 98, 193 (1993)

[3] S. Zhou, F. W. Wise, and D. G. Ouzounov, Opt. Lett. 32, 871 (2007)

[4] S. Podleska, German Patent DE102006060703 (2006)

Temporal multiplexing Divided-pulse amplification (DPA)^[2,3,4]

M-times scaling (of the peak power)

> Artificial scaling of stretched pulse duration

Mutual coherence of the laser pulses from the channels Separation Stage

Institute of

Applied Physics

Friedrich-Schiller-Universität Jena

Beam division by (polarizing) beam splitters

Single seed source

Mutual coherence of the laser pulses from the channels

Single seed source

Amplification properties should be matched

Spectral intensity and phase of the pulses Spatial intensity and phase of the beams

Institute of

Applied Physics

Friedrich-Schiller-Universität Jena

Separation Stage Aublilie Aublilie Aublilie

Combining the beams

Spatial overlap of the beams from the channels

Mutual coherence of the laser pulses from the channels

Single seed source

Amplification properties should be matched

Spectral intensity and phase of the pulses Spatial intensity and phase of the beams

Institute of

Applied Physics

Friedrich-Schiller-Universität Jena

Combining the beams

Spatial overlap of the beams from the channels

The setup is a Mach-Zehnder type interferometer

Active stabilization mechanism required E.g. with piezo actuators

Institute of Applied Physics Friedrich-Schiller-Universität Jena

Polarization beam combining

[1] T.W. Hänsch, B. Couillaud, Opt. Commun. 35 441 (1980)

[1] J. Limpert, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, Light Sci. Appl. 1, e8 (2012)

ASSOCIATION

4-channel setup

8-channel setup

- **fs** pulse duration
- >40kHz repetition rate
- 230W/5.7mJ ave. power/pulse energy^[1]
 (22GW peak power)
- 530W/1.3mJ ave. power/pulse energy^[2]
- ~90% combination efficiency
- M² < 1.3

- **fs** pulse duration
- >100kHz repetition rate
- 1kW/1mJ ave. power/pulse energy^[3]
- **870W/3.3mJ** ave. power/pulse energy^[3]
- ~90% combination efficiency
- M² < 1.2

[1] A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, *Opt. Lett.* 39, 6875 (2014)
 [2] A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, *Opt. Lett.* 38, 2283 (2013)
 [3] M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, *Opt. Lett.* 41, 3439 (2016)

4-channel setup

8-channel setup

The world most powerful ultrafast fiber-laser system!

- **fs** pulse duration
- >40kHz repetitic
- 230W/5.7mJ ave. power/pulse energy^[1]
 (22GW peak power)
- **530W/1.3mJ** ave. power/pulse energy^[2]
- ~90% combination efficiency
- M² < 1.3

- **1kW/1mJ** ave. power/pulse energy^[3]
- 870W/3.3mJ ave. power/pulse energy^[3]
- ~90% combination efficiency
- M² < 1.2

[1] A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann, *Opt. Lett.* 39, 6875 (2014)
 [2] A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, *Opt. Lett.* 38, 2283 (2013)
 [3] M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, *Opt. Lett.* 41, 3439 (2016)

Power-scaling of ultrashort-pulse fiber laser systems Spatial multiplexing

HELMHOLTZ ASSOCIATION Helmholtz Institute Jena

Institute of Applied Physic

Institute of Applied Physic

Thank you for your attention!

We acknowledge support by:

SPONSORED BY THE

Federal Ministry of Education and Research

European Research Council

Marco Kienel

marco.kienel@uni-jena.de

www.iap.uni-jena.de